Proportionnalité

1 Situations de proportionnalité

Définition

Deux grandeurs sont **proportionnelles** si les valeurs de l'une s'obtiennent en multipliant les valeurs de l'autre par un même nombre non nul, appelé **coefficient de proportionnalité**.

Exemple

A la boulangerie, chaque bonbon coute $0, 15 \in$, on a donc :

prix à payer = nombre de bonbons achetés $\times 0, 15$

Le prix à payer est **proportionnel** au nombre de bonbons achetés.

0,15 est le coefficient de proportionnalité.

Par exemple, avec $1,50 \in$, on peut acheter 10 bonbons (car $1,50 = 10 \times 0,15$).

Remarque

On peut représenter la situation dans un tableau en y rassemblant les grandeurs étudiées. Pour l'exemple précédent, on aurait pu construire le tableau suivant :

Nombre de bonbons	1	2	3	10
Prix (en €)	0,15	0,30	0,45	1,50

Ce tableau est appelé tableau de proportionnalité.

Le quotient d'une ligne par une autre ligne est toujours égal au coefficient de proportionnalité.

Exemple

Dans le chapitre précédent, les lignes **effectifs** et **fréquences** d'un tableau de données sont toujours **proportionnelles**!

Exemple

On a relevé dans le tableau ci-dessous la consommation, en fonction du temps, d'un robinet mal fermé.

Temps écoulé (en jours)	1	7	365	1	× 0,432
Quantité d'eau (en L)	0,432	3,024	157,68	4	X 0,432

On calcule les quotients : $\frac{0,432}{1} = 0,432$; $\frac{3,024}{7} = 0,432$; $\frac{157,68}{365} = 0,432$.

Tous les quotients sont égaux à 0,432, donc le tableau est un tableau de proportionnalité :

- La quantité d'eau est proportionnelle au temps écoulé.
- \bullet 0,432 est le coefficient de proportionnalité.

Exemple

Angélique et Claire achètent respectivement un pack de 6 litres de jus d'orange à $9,12 \in$ et un pack de 4 litres à $6,48 \in$.

On récapitule ces résultats dans le tableau ci-dessous :

Jus d'orange (en L)	6	4	
Prix à payer (en €)	9,12	6,48	

On calcule les quotients : $\frac{9,12}{6} = 1,52$; $\frac{6,48}{4} = 1,62$.

Les quotients ne sont pas égaux, ce tableau n'est donc pas un tableau de proportionnalité:

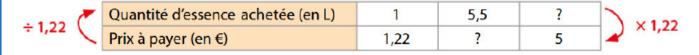
- Le prix à payer n'est pas proportionnel à la quantité de jus d'orange achetée.
- Il n'y a pas de coefficient de proportionnalité.

2 Quatrième proportionnelle

Propriété

Dans un tableau de proportionnalité à quatre cases, lorsque l'on ne connaît que trois valeurs, on peut calculer la quatrième valeur, appelée **quatrième proportionnelle**.

Propriété: Méthode 1 : à l'aide du coefficient de proportionnalité


Pour compléter un tableau de proportionnalité, on peut utiliser le coefficient de proportionnalité pour passer d'une ligne à l'autre.

Exemple

Marie fait le plein d'essence de son scooter dont le réservoir a une contenance de 5,5L. La station-service affiche un prix de l'essence à $1,22 \in l$ le litre.

- 1. Combien va-t-elle payer son plein d'essence?
- 2. Quelle quantité d'essence peut-elle acheter avec $5 \in ?$

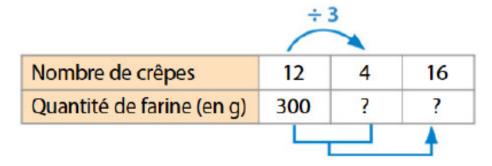
On construit le tableau de proportionnalité suivant :

Le prix à payer est proportionnel à la quantité d'essence achetée et le coefficient de proportionnalité est égal à 1,22. Marie va donc payer son plein d'essence $5,5\times 1,22=6,71\in$.

Avec $5 \in$, Marie peut acheter $5L \div 1, 22$ soit environ 4, 1L.

Propriété: Méthode 2 : liens entre les colonnes

Pour obtenir les nombres d'une colonne dans un tableau de proportionnalité, on peut :


- Multiplier ou diviser les nombres d'une autre colonne par un même nombre.
- \bullet ${\bf Ajouter}$ ou ${\bf soustraire}$ les nombres de deux autres colonnes.

Exemple

Une recette de crêpes indique qu'il faut 300g de farine pour cuisiner 12 crêpes.

- 1. Quelle quantité de farine faut-il pour cuisiner 4 crêpes?
- 2. Quelle quantité de farine faut-il pour cuisiner 16 crêpes?

La quantité de farine à utiliser est proportionnelle au nombre de crêpes à cuisiner, on peut donc faire un tableau de proportionnalité :

- 1. Pour faire 4 crêpes, il faut utiliser 300 g ÷ 3, soit 100 g de farine.
- 2. Pour faire 16 crêpes, il faut utiliser 300 g + 100 g, soit 400 g de farine.

Propriété: Méthode 3 : passage par l'unité

Pour traiter une situation de proportionnalité, il est parfois plus judicieux de revenir à l'unité.

Exemple

Clara a acheté 3 cahiers pour 3,60 \in . Emma a besoin de 7 cahiers. Combien devra-t-elle payer? 3 cahiers coutent 3,60 \in , donc 1 cahier coute $\frac{3,60}{3} = 1,20 \in$. Ainsi, 7 cahiers coutent $\frac{3,60}{3} \times 7 = 1,20 \times 7 = 8,40 \in$.

Nombre de cahiers	3	7
Prix (en €)	3,60	?

3

3 Calculer un pourcentage

Propriété

Soit x un nombre positif.

Calculer x % d'une quantité revient à multiplier cette quantité par $\frac{x}{100}$.

Exemple

Dans un pot de crème fraiche de 20 cL, il y a 12 % de matière de grasse.

12 % de
$$20 = \frac{12}{100} \times 20 = 2,4$$

La quantité de matière grasse dans le pot est égale à 2,4 cL.

Exemple

Un article coûte 89 €. Son prix est réduit de 20 %.

La réduction est de 20 % de $89 \in \frac{20}{100} \times 89 = 17,80$

Le nouveau prix sera donc $89 - 17, 80 = 71, 20 \in$.

Remarque

Un pourcentage exprime une proportion par rapport à 100, il peut sécrire sous plusieurs formes :

15 % (pourcentage) = $\frac{15}{100}$ (écriture fractionnaire) = 0, 15 (écriture décimale)

Pour calculer un pourcentage, on peut utiliser un tableau de proportionnalité.

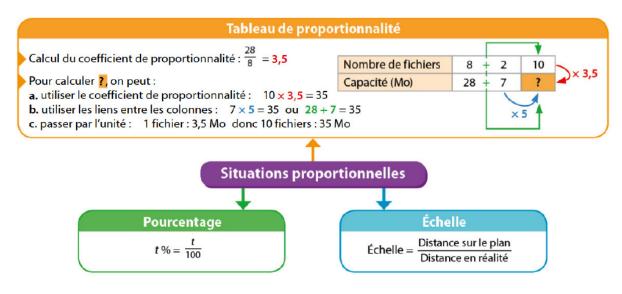
Exemple

Une automobile qui coûtait $8000 \in$ est vendue $6800 \in$. A quel pourcentage du prix initial correspond la remise?

Pourcentage	100	?
Prix (en €)	8000	6800

? = $6800 \div 80 = 85$, l'article est vendu à 85 % du prix initial.

Exemple: A l'aide d'un tableau de proportionnalité


Dans une classe de 23 élèves de 3^e , 15 élèves connaissent leur orientation scolaire pour l'année suivante. Quel pourcentage cela représente-t-il?

On peut représenter cette situation par un tableau de proportionnalité :

La proportion d'élèves connaissant leur orientation est de environ 65,2%.

4 Carte mentale

