Exo 3, correction

Guillaume Woessner

Abstract

Les temps d'arrêt.

Dans tout ce document, l'espace de probabilité considéré est $(\Omega, \mathcal{F}, (\mathcal{F}_n)_n, \mathbb{P})$.

Exercice 1 Enoncez le théorème de décomposition de Doob pour les sous-martingales et pour les sur-martingales.

Soit $(X_n)_n$ un processus stochastique adapté à la filtration, tel que $\mathbb{E}[|X_n|] < \infty$. Quelle pourrait être une décomposition de Doob pour ce processus ? Montrez qu'effectivement un telle décomposition existe.

Proof. La même preuve que celle du cours fonctionne pour montrer que $X_n = M_n + A_n$ avec A_n un processus prédictible (*ie* un processus tel que A_n est mesurable par rapport à \mathcal{F}_{n-1}) donné par

$$A_n := \sum_{k=1}^n \mathbb{E}[X_k \mid \mathcal{F}_{k-1}] - X_{k-1},$$

et M_n est une martingale donnée par

$$M_n = X_n - A_n = X_0 + \sum_{k=1}^n X_k - \mathbb{E}[X_k \mid \mathcal{F}_{k-1}].$$

Exercice 3 Soit S_n une marche aléatoire simple sur \mathbb{Z} , et $\tau := \inf_{n \in \mathbb{N}} \{S_n = 1\}$. Montrez que τ est un temps d'arrêt et que $\tau < \infty$ as.

Proof. C'est un temps d'arrêt car

$$\begin{split} \{\tau \leq n\} &= \{\exists k \leq n \ : \ S_k = 1\} \\ &= \cup_{k \leq n} \{\#\{i \leq k \ : \ X_i = 1\} - \#\{i \leq k \ : \ X_i = -1\} = 1\}. \end{split}$$

Or ces évenements sont en nombres finis, et déterminés par les $(X_i : i \leq n)$. Donc $\{\tau \leq n\}$ est bien mesurable par rapport à \mathcal{F}_n .

Pour la seconde propriété, voir le corrigé de la Feuille 5 Exercice 1.

Exercice 5 Soient τ_1 et τ_2 deux temps d'arrêt. Est-ce que $\tau_1 + \tau_2$ est encore un temps d'arrêt ? Pourquoi ?

Proof. On a

$$\{\tau_1 + \tau_2 = n\} = \bigcup_{k \le n} \{\tau_1 = k\} \cap \{\tau_2 = n - k\}$$

Or ces évenements sont en nombres finis, et mesurables par rapport à \mathcal{F}_n , ainsi $\{\tau_1 + \tau_2 = n\}$ est mesurable par rapport à \mathcal{F}_n . Enfin, il suffit de noter que

$$\{\tau_1 + \tau_2 \le n\} = \bigcup_{k \le n} \{\tau_1 + \tau_2 = k\}.$$

1