Exo 13, corrigé

Guillaume Woessner

Abstract

Le mouvement brownien (MB), fin.

Dans tout ce document, l'espace de probabilité filtré considéré est $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})$, et on supposera que $(B_t)_t$ est un mouvement brownien adapté à la filtration.

Exercice 1 Dans tout cet exercice, on supposera que $(X_t)_{t\geq 0}$ est un processus continu sur \mathbb{R} et adapté à la filtration. On définit une variable aléatoire positive $\tau_E := \inf\{t \geq 0 : X_t \in E\}$ où $E \subset \mathbb{R}$.

Montrez que si E est fermé, alors τ_E est un temps d'arrêt.

Montrez que si E n'est pas fermé, ce n'est pas forcément vrai.

Montrez qu'en revanche on a $\{\tau_E \leq t\} \in \mathcal{F}_{t+} := \cap_{u>t} \mathcal{F}_u$ pour tout t si E est ouvert.

Proof.

• On a que, pour tout $t \geq 0$,

$$\{\tau_E \le t\} = \{\inf\{d(X_q, E) : 0 \le q \le t\} = 0\} = \{\inf\{d(X_q, E) : 0 \le q \le t, t \in \mathbb{Q}\} = 0\}.$$

Or, chaque X_q est mesurable par rapport à \mathcal{F}_t , de plus $d(\cdot, E)$ est continue donc mesurable également, et ainsi la fonction $\inf\{d(X_q, E) : 0 \le q \le t, t \in \mathbb{Q}\}$ est encore mesurable par rapport à \mathcal{F}_t . Donc sa préimage de 0, qu'on a dit être $\{\tau_E \le t\}$, est bien dans \mathcal{F}_t .

- Si E est un ouvert, alors le résultat est faux. Moralement ce qui bloque c'est que l'évenement $\{\tau_E=t\}=\{\tau_E\leq t\}-\{\tau_E< t\}$ ne peut pas être déterminé par l'information disponible au temps t donnée par \mathcal{F}_t (alors que ça devrait être le cas, d'après le point 1). A cet instant précis, on sait seulement que X_t est arrivé sur la frontière ∂E , mais peut-être va-t-il faire demi-tour et ne pas rentrer dans E.
- ullet On a que, comme E est ouvert et X continu,

$$\{\tau_E \le t\} = \{\forall n \in \mathbb{N}^\times, \exists q \in \mathbb{Q}^+, q \le t + \frac{1}{n} : X_t \in E\}$$
$$= \cap_{n \in \mathbb{N}^\times} \cup_{t \in \mathbb{Q}^+ \cap [0, a + \frac{1}{n}]} \{X_t \in E\}.$$

Or chaque $A_n := \bigcup_{t \in \mathbb{Q}^+ \cap [0, a + \frac{1}{n}]} \{X_t \in E\} \in \mathcal{F}_{a + \frac{1}{n}}$. Ainsi on a bien que $\bigcap_{n \in \mathbb{N}^\times} \in \mathcal{F}_{t + 1}$.

Exercice 2 Dans tout cet exercice, on supposera que $(X_t)_{t\geq 0}$ est un processus continu sur \mathbb{R} et adapté à la filtration. On définit aussi une variable aléatoire positive quelconque T.

Montrez que si $\{T \leq t\} \in \mathcal{F}_t$ pour tout t (ie si T est un temps d'arrêt), alors $\{T < t\} \in \mathcal{F}_t$ pour tout t.

Montrez que la réciproque est fausse.

Proof. On sait que $\{T < t\} = \bigcup_{n \in \mathbb{N}^{\times}} \{T \le t - \frac{1}{n}\}$. Or chaque $\{T \le t - \frac{1}{n}\} \in \mathcal{F}_{t - \frac{1}{n}} \subset \mathcal{F}_t$, donc leur union aussi.

Pour trouver un contre-exemple à la réciproque, on peut reprendre celui de l'exercice précédent. On a déjà vu que si E est ouvert, alors de manière générale pour tout t, $\{\tau_E \leq t\} \notin \mathcal{F}_t$. Mais parallèlement on a $\{\tau_E < t\} = \bigcup_{n \in \mathbb{N}^\times} \{\tau_E \leq 1 - \frac{1}{n}\}$. Or chaque $\{\tau_E \leq 1 - \frac{1}{n}\} \in \mathcal{F}_{t-\frac{1}{n}+} \subset \mathcal{F}_t$, donc leur union aussi.

Exercice 3 Soit a, b > 0 et $T_{-a,b} := \inf\{t \ge 0 : B_t \in \{-a, b\} \}$.

Montrez que c'est un temps d'arrêt presque sûrement fini, et que $\mathbb{E}[T_{-a,b}] = ab < \infty$.

Indication: Utilisez le résultat du TD 5, Exercice 1.

Proof. On va utiliser le résultat du TD 5, Exercice 1 (qui se généralise bien sûr immédiatement au cas général).

On discrétise le mouvement brownien de la manière suivante. On pose $n \in \mathbb{N}^{\times}$, et on définit pour chaque n le processus $(B_k^n)_{k \in \mathbb{N}}$ par $B_k^n := B_{\frac{k}{2^n}}$. Chaque B^N est bien sûr une martingale discrète, et on peut appliquer le résultat du TD 5, Exercice 1 aux temps d'arrêts $\tau_{-a,b}^n$ associés. On remarque que la suite $(\tau_{-a,b}^n)_n$ est presque sûrement décroissante, donc en utilisant le théorème de convergence monotone, on peut conclure par passage à la limite.

Remarque: le même raisonnement peut s'appliquer pour les temps d'arrêts de la forme τ_a .

Exercice 4 Soit \mathcal{Z} l'ensemble des zéros de B.

Montrez que \mathcal{Z} est presque sûrement un ensemble parfait (ie fermé et sans point isolé), et en déduire qu'il est indénombrable.

Remarque : En déduire qu'il est indénombrable est un exercice non-trivial, qui ne fait pas intervenir la théorie des probabilités, et donc non-examinable.

Proof. On ne corrige donc que la première partie.

La continuité de B entraı̂ne que \mathcal{Z} est presque sûrement fermé. On n'a donc plus qu'à vérifier qu'il est presque sûrement sans point isolé.

On définit $\tau_q := \inf\{t \geq q : B_t = 0\}$, fini presque sûrement pour tout q car $\mathcal Z$ est non borné. Comme $B_{\tau_q} = 0$, d'après la propriété de Markov forte, on sait que $B_{t+\tau_q}$ est encore un mouvement brownien. De plus pour tout mouvement brownien $\tilde B$, on a presque sûrement inf $\{t \geq 0 : \tilde B_t = 0\}$. Ainsi, presque sûrement pour tout $q \in \mathbb Q^+$, τ_q n'est pas un point isolé.

Enfin, si $t \in \mathcal{Z} - \{\tau_q : q \in \mathbb{Q}^+\}$, on considère une suite de rationnels $q_n \hat{t}$, et on observe que $q_n \leq \tau_{q_n} < t$, et donc t n'est pas isolé.

Pour la seconde partie, on peut regarder dans Hewitt & Stromberg - Real and abstract analysis - Theorem 6.55 - page 72, qui est un théorème de topologie montrant que tout ensemble parfait infini est indénombrable.

Exercice 5 On définit $S_t := \sup_{s \in [0,t]} B_s$.

Déduire du principe de réflexion que, pour tout $t \geq 0$ fixé $S_t \sim |B_t|$.

Déduire aussi du principe de reflexion que la loi du couple (S_t, B_t) a pour densité

$$f_{(S_t,B_t)}(a,b) = \frac{2(2a-b)}{\sqrt{2\pi t^3}} \exp\left(-\frac{(2a-b)^2}{2t}\right) \mathbf{1}_{a>0,b< a}.$$
 (.1)

En déduire la loi de $\tau_a := \inf\{t \ge 0 : B_t = a\}$, et que $\mathbb{E}[\tau_a] = \infty$.

Proof. On rappelle tout d'abord le principe de reflexion : pour tout $0 \le b \le a$, on a

$$\mathbb{P}(S_t \ge a, B_t \le b) = \mathbb{P}(B_t \ge 2a - b). \tag{.2}$$

On en déduit que

$$\mathbb{P}(S_t \ge a) = \mathbb{P}(S_t \ge a, B_t \ge a) + \mathbb{P}(S_t \ge a, B_t \le a) = 2\mathbb{P}(B_t \le a) = \mathbb{P}(|B_t| \ge a),$$

ce qui permet de conclure à l'égalité des fonctions de répartition.

Ensuite, en dérivant deux fois la double fonction de répartition donnée par (??), et en utilisant la densité de B_t , on obtient bien (??).

Ensuite, on calcule

$$\mathbb{P}(\tau_a \le t) = \mathbb{P}(S_t \ge a) = \mathbb{P}(|B_t| \ge a) = \mathbb{P}(\sqrt{t}|B_1| \ge a) = \mathbb{P}\left(\frac{a^2}{B_1^2} \le t\right).$$

Donc τ_a a la même loi que $\frac{a^2}{B_1}$, et donc

$$f_{\tau_a}(t) = \frac{a}{\sqrt{2\pi t^3}} \exp\left(-\frac{a^2}{2t}\right) \mathbf{1}_{t>0}.$$

Ainsi $\mathbb{E}[\tau_a] = \infty$, ce qui est cohérent avec la remarque de l'Exercice 3.

Exercice 6 Soit $n \ge 0$. On découpe l'intervalle [0,1[en sous-intervalles de taille 2^{-n} définis par $I_i^n := \left[\frac{i}{2^n}, \frac{i+1}{2^n}[$ pour $i = 0, \dots, 2^n - 1$. On dit qu'un tel intervalle I_i^n est "bon" si $\exists t \in I_i^n : B_t = 0$, et on note $p_i^n := \mathbb{P}(I_i^n \text{ est bon})$.

Prouvez qu'il existe 0 < m < M indépendants de n et i tels que

$$\frac{m}{\sqrt{i+1}} \le p_i^n \le \frac{M}{\sqrt{i+1}}.$$

En déduire un encadrement de l'espérance du nombre \mathbb{N}^n de bons intervalles I_i^n à n fixé. Montrez que

$$\lim_{n} \frac{\ln(\mathbb{E}[N^n])}{\ln(2^n)} = \frac{1}{2}, \qquad presque \ sûrement.$$

Que doit-on changer si on s'intéresse plutôt aux moments où $B_t \in \mathbb{Z}$?

Proof. On remarque d'abord que, par la propriété d'échelle du mouvement brownien,

$$p_i^n = \mathbb{P}\left(\exists t \in \left[\frac{i}{2^n}, \frac{i+1}{2^n}\right[: B_t = 0\right) = \mathbb{P}\left(\exists t \in \left[1, 1 + \frac{1}{i}\right[: B_t = 0\right).\right)$$
(.3)

Ensuite on borne p_i^n ,

m: Premièrement, il faut remarquer que, par (??), on a $p_i^n \ge \mathbb{P}(B_1 > 0 \cap B_{1+\frac{1}{i}} < 0)$. Ensuite, on calcule, en suivant un raisonnement similaire à l'Exercice 8 du TD 10,

$$\begin{split} \mathbb{P}(B_{1} > 0 \, \cap \, B_{1+\frac{1}{i}} < 0) &= \dots = \int_{\mathbb{R}^{+}} \mathbb{P}(B_{\frac{1}{i}} < -y) d\mathbb{P}(B_{1} = y) \\ &= \int_{\mathbb{R}^{+}} \mathbb{P}(B_{\frac{1}{i}} > y) d\mathbb{P}(B_{1} = y) \\ &= \int_{\mathbb{R}^{+}} \mathbb{P}(B_{1} > \sqrt{i}y) d\mathbb{P}(B_{1} = y) \\ &= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}^{+}} \mathbb{P}(B_{1} > \sqrt{i}y) e^{-\frac{y^{2}}{2}} dy \\ &\geq^{\star} \frac{1}{2\pi} \int_{\mathbb{R}^{+}} \left(\frac{1}{\sqrt{i}y} - \frac{1}{(\sqrt{i}y)^{3}} \right) e^{-\frac{iy^{2}}{2}} e^{-\frac{y^{2}}{2}} dy \\ &= \frac{1}{2\pi} \int_{\mathbb{R}^{+}} \left(\frac{iy^{2} - 1}{(\sqrt{i}y)^{3}} \right) e^{-(i+1)\frac{y^{2}}{2}} dy \\ &= \frac{1}{2\pi\sqrt{i+1}} \int_{\mathbb{R}^{+}} \left(\frac{\frac{i}{i+1}z^{2} - 1}{(\sqrt{\frac{i}{i+1}z})^{3}} \right) e^{-\frac{z^{2}}{2}} dz \\ &\geq \frac{1}{2\pi\sqrt{i+1}} \int_{\mathbb{R}^{+}} \frac{c}{\sqrt{z}} e^{-\frac{z^{2}}{2}} dz, \end{split}$$

pour un certain c > 0. Le résultat s'en déduit en notant $m := \frac{c}{2\pi} \int_{\mathbb{R}^+} \frac{1}{\sqrt{z}} e^{-\frac{z^2}{2}} dz < \infty$.

M: Ensuite, avec (??) et les notations de l'Exercice 5, on a

$$p_i^n = \int_{\mathbb{R}} \mathbb{P}\left(\exists t \in \left[1, 1 + \frac{1}{i}\right[: B_t = 0 \mid B_1 = x\right) f_{B_1}(x) dx = 2 \int_0^\infty \mathbb{P}\left(\tau_x < \frac{1}{i}\right) f_{B_1}(x) dx.\right)$$
(.4)

Or, d'après l'Exercice 5,

$$\mathbb{P}\left(\tau_x < \frac{1}{i}\right) = \int_0^{\frac{1}{i}} \frac{x}{\sqrt{2\pi t^3}} e^{-\frac{x^2}{2t}} dt = \int_{ix^2}^{\infty} \frac{1}{\sqrt{2\pi u}} e^{-\frac{u}{2}} du := I.$$

Ensuite, on peut majorer cette intégrale I de deux manières différentes :

si $x^2 \ge 1/i$, alors $u \ge 1$ et:

$$I \le \int_{ix^2}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u}{2}} du = \frac{1}{\sqrt{2\pi}} e^{-\frac{ix^2}{2}}.$$

si $x^2 \le i/1$, alors comme $e^{-\frac{u}{2}} \le 1$:

$$I \le \int_{ix^2}^1 \frac{1}{\sqrt{2\pi u}} du + \int_1^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{u}{2}} du = \frac{1}{\sqrt{2\pi}} (2 - 2\sqrt{i}x + e^{-\frac{1}{2}}) \le \frac{1}{\sqrt{2\pi}} (2 + e^{-\frac{1}{2}}).$$

Ainsi, reprenant (??),

$$p_{i}^{n} = 2 \int_{\frac{1}{\sqrt{i}}}^{\infty} \mathbb{P}\left(\tau_{x} < \frac{1}{i}\right) f_{B_{1}}(x) dx + 2 \int_{0}^{\frac{1}{\sqrt{i}}} \mathbb{P}\left(\tau_{x} < \frac{1}{i}\right) f_{B_{1}}(x) dx$$

$$\leq \frac{2}{2\pi} \int_{\frac{1}{\sqrt{i}}}^{\infty} e^{-\frac{ix^{2}}{2}} e^{-\frac{x^{2}}{2}} dx + \frac{2}{2\pi} \int_{0}^{\frac{1}{\sqrt{i}}} (2 + e^{-\frac{1}{2}}) e^{-\frac{x^{2}}{2}} dx$$

$$\leq \frac{1}{\pi} \int_{\sqrt{\frac{i+1}{i}}}^{\infty} e^{-\frac{y^{2}}{2}} \frac{dy}{\sqrt{i+1}} + \frac{2 + e^{-\frac{1}{2}}}{\sqrt{i}}$$

$$\leq \dots \leq \frac{M}{\sqrt{i+1}}$$

Ainsi, on peut calculer

$$\mathbb{E}[N^n] = \mathbb{E}\left[\sum_{i=0}^{2^n-1} \mathbf{1}_{I_i^n \text{ bon}}\right] = \sum_{i=0}^{2^n-1} p_i^n.$$

L'encadrement suivant découle alors de l'encadrement des p_i^n et de comparaisons séries-intégrales :

$$m2^{n/2} \le \mathbb{E}[N^n] \le M2^{n/2}.$$

Le dernier résultat en découle.

* est vraie en utilisant que, pour $X \sim \mathcal{N}(0,1)$, on a pour tout x > 0,

$$\mathbb{P}(X > x) \ge \frac{1}{\sqrt{2\pi}} \left(\frac{1}{x} - \frac{1}{x^3} \right) e^{-\frac{x^2}{2}}.$$

Preuve:

$$\begin{split} \mathbb{P}(X > x) &= \frac{1}{\sqrt{2\pi}} \left(\int_x^\infty \frac{t}{t} e^{-\frac{t^2}{2}} dt \right) \\ &= \frac{1}{\sqrt{2\pi}} \left(\left[-\frac{1}{t} e^{-\frac{t^2}{2}} \right]_x^\infty - \int_x^\infty \frac{1}{t^2} e^{-\frac{t^2}{2}} dt \right) \\ &\geq \frac{1}{\sqrt{2\pi}} \left(\frac{1}{x} e^{-\frac{x^2}{2}} - \int_x^\infty \frac{t^3}{x^3} \frac{e^{-\frac{t^2}{2}}}{t^2} dt \right) \\ &= \frac{1}{\sqrt{2\pi}} \left(\frac{1}{x} e^{-\frac{x^2}{2}} - \frac{1}{x^3} \int_x^\infty t e^{-\frac{t^2}{2}} dt \right) \\ &= \frac{1}{\sqrt{2\pi}} \left(\frac{1}{x} e^{-\frac{x^2}{2}} - \frac{1}{x^3} e^{-\frac{x^2}{2}} \right) \end{split}$$