Exo 1, correction

Guillaume Woessner

Abstract

The conditional expectation.

Exercice 0 Let T be a discrete random variable, and X be measurable with respect to o (7).
Show that it exists a measurable function f such that X = f(T).

Prove that the converse is also true.

(Please note that this equivalence also holds if T is not discrete.)

Proof. We will only prove the first implication.

First, note that it is enough to prove that, for every ¢t € Sy, we have wy,ws € {T € t}, implies
X(w1) = X(w2), because in this case we can define f(t) = X (w1).

Thereby, suppose by absurd that for such w;, we have X(w;1) =: a # b := X (w2). Then, considere
Ay = {T =t} N X"Ya) and Ay := {T = t} N X1(b) in o(T) and disjoint in {T" = t} by
assumption. But this contradicts the fact that X is measurable with respect to o(T). |

I Definition

Exercice 1 Let X, T be two random variables such that E[|X|] < oo and such that T is discrete.
Give the definition of the conditional expectation E[X | T.
Prove that the following identity, characterizing the conditional expectation (see course) is true,

Vf : R+ R mesurable and bounded, E[f(TE[X | T]] =E [f(T)X].
Proof. In the discrete case, we have
EX | T)= Y E[X | T =tl7.
teST
Thus we can compute

E[f(T)EX | T]] =E[f(T) Y EIX | T = t]lr=] = Z (X | T =HE[f(T)1r=]

teST

= EX | T=1f(t) ZEXf | T =HP(T =1)
=Y E[Xf(T) | T =4P(T = t) = E[X f(T)],
t
the last equility coming from the totale probabilities formula. |

Exercice 2 Let X,Y be two random variables such that (X,Y’) has a density h(z,y) and X
admits a first moment. Let A € B(R) and yo € R. Compute, fore > 0, P(X € A|Y €]yo—e; yo+e[),
and propose an expression for E[X | Y].

Finally, show that indeed

Jgxh(z,Y)dx

EX Y] = Jo M@, Y)dx

(L.1)



Proof. We have, for yy € R and ¢ > 0, and supposing that the density if continuous, the following
formal reasonning

P(X€ANY €ly—eiyo+e])
P(Y €]yo — €590 +€l)
vote Sy bz, y)dedy

P(X € A|Y €lyo — ;90 +¢[) =

_ JYo—¢
+
yyo(’f; Jr A( )dzdy
2e Z,%0) h(x
—e0 fA ( 0 / yO
2¢ [ h(z, yo)d Jg M2’ yo)d
Thus, we can infere that the conditional law of X knowing {Y = yo} has a density
h( yo)
Jo h(@', yo)da'”

and thus we would have indeed (?7?).

Now, we have to prove to prove rigorously (?7).
By Exercice 0, we know that it exists f measurable such that E[X | Y] = f(Y), thus we have to
find the f such that, for every measurable bounded function g we have

E[Xg(Y)] = E[f(Y)g(Y)]. (L.2)

The left hand side checks

:/AXng(y)h(x,y)dxdy:A(/th(x,y)dx) 9(y)dy.

The right hand side checks

E[f(Y)g(Y)] =/Afo(y)g(y)h(x,y)dxdy:A(f(y)/Rh(x,y)dx> 9(y)dy.

This being true for every function g, we can deduce (why?) that, for almost all y,

f(y)/Rh(m,y)d:cz/R:ch(x,y)dx.

Thus, indeed, the f checking (?7) is the one given by (77?). [ |

II Properties

Exercice 3 Let X, X1, Xo,... be random variables such that E[| X;|] < co, and F be a o-algebra.
Prove that the following properties are true,

i) EMX1 4+ XX | Fl=MEX) | FIl+ M E[Xy | F.
ii) If X >0, then E[X | F] > 0. Deduce that if X =0, then E[X | F] = 0.

iii) |E[X | F]| < E[|X| | F]. Deduce that |E[X | F]||; < || X[}1, which means that if X is
integrable, then E[X | F] also.

iv) If X is measurable with respect to F, one has E[X | F] =

v) If ¢ is a convex function on R such that E[|¢(X)[] < oo, one has ¢(E[X | F]) <E [p(X) | F]
(this is Jensen conditional inequality).



vi) If X,, = X as, and Vn > 0, |X,| <Y € L', one has E[X,, | F] — E[X | F] in L' (this is
conditional dominated convergence theorem).

vii) If Z is a F-measurable bounded random variable, then E[X | F]Z =E[XZ | F].
viii) E [E[X | F]] = E[X].
ix) If 7’ is another o-algebra such that 7' C F, one has

]E[E[X | F'T1 ]-'] =E[X | F] :IE[IE[X | F] | ]—"’}.

Proof. Points1i), ii), iii) and iv) are given by the proof of the existence and unicity of the conditional
expectation.

v) Let 2o := E[X | F], and by classical properties of convex functions, we know that we can
define a,b € R such that az + b < ¢(z) and axg + b = p(xg). Thus

@(E[X | .7:]) =p(xg) =axg+b=aE[X | F]+b=E[aX +b | F] <E[p(X) | F].

Note that it is just the classical proof of Jensen’s inequality, written for conditional expecta-
tions. Also note that xg, a and b are random variables, but since they are F-measurable the
computations we made are allowed.

vi) By the classical dominated convergence, we have || X,, — X||1 — 0. Thus by i) and then by
iii) we have indeed

IE[X, | F]-EX | Fllli = | E[Xn — X | Fllh < | Xn — X[l1 = 0.
vii) Take A € F, and notice that Z1,4 is F-measurable, thus by definition indeed
E[(E[X | F12)1a] = E[E[X | F(Z14)] = E[XZ14].

viii) It’s just the definition of the conditional expectation with 14 =1, ie A = Q.
ix) For clarity, note Z := E[X | F'].
The first equality is true because Z is F-measurable and thus we can use point iv).
The second equality is a little bit more tricky. We have to show that for every F' € F',
E[Z1p] =E [E[X | F]l1F].
But since 1p is F-measurable, we can use points vii) and viii) to show that
E[E[X | F]1r] =E [E[X1p | F]] = E[X1p].
Finally, one can note that E[X1p] = E[Z1F] by the definition of Z.

Exercice 4 Let X7, X5 be two random variables such that E[|X;|] < oo, and F be a o-algebra.
Suppose that X; is independant of F, and show that

E[Xl | .7:] = E[Xl} as.

Suppose that X; is independant of o(o(X3), F), and that E[| X1 X,

] < 00, and show that

E[X:1X; | F] = E[X, | FIE[X; | F].



Proof. e First, we have to show that, for every A € F,
E [E[X1]14] = E[X114].
And indeed thanks to independance, we have

E [E[X1]14] = E[X1]E[14] = E[X;14].

e Now, we have to show that, for every A € F,
E [E[X1 | FIE[ X2 | ]-']1,4} = E[X1 X514].

And indeed thanks to independance, we have, noting Z := E[Xs | F|]la = E[X314 | F] a
F-measurable function

E[E[X, | FIE[X, | F]14] := E [E[X, | F]Z] = E[X, Z]
Xy

E[X1 E[X214 | F]] = E[X1] E[E[X214 | F]]
E[X;] E[X214] = E[X} X21.4]

IIT Exercices

Exercice 5 Let X,Y,Z be three random variables with a first order such that (X, Z) has the
same law as (Y, Z). Show that for all f > 0 measurable and bounded,

E[f(X) [ 2 =E[f(Y) | Z].

Then, let g > 0 a measurable and bounded function, and define hy(X) := E[g(Z) | X] and
ho(Y) :=E[g(Z) | Y]. Show that hy = hg, p-ae, where y is the law of X (and of ).

Proof. For the first part, note that for every g measurable and bounded, since the equality of the
laws

E[f(X)g(2)] = E[f(Y)g(Z)]
& E[E[f(X)]| Zl9(2)] =E[E[f(Y) | Z]9(2)].

This beeing true for every function g, we can deduce (why?) that, Z-almost surely

E[f(X) | Z] =E[f(Y) | Z].

For the second part, note that (X,Z) ~ (Y, Z) implies X ~Y ~ u. Then we compute, for every
measurable bounded function ¢,

Elg(Z2)p(X)] = E[g(Z)p(Y)]
& Eh(X)p(X)] =Eh(Y)e(Y)]
& E[h1(X)p(X)] = E[h2(X)p(X)]

Thus E[(h; — h2)(X)p(X)) = 0, and this beeing true for every function ¢ we can deduce (why?)
the desired result. [}



Exercice 6 Let T7,...,T, be i.i.d. integrable random variables, et let T" := Z:‘L=1 T;.

Show that T
E[T | Tl] = T1 + (’I’L - 1) E[Tl] and [TI ‘ T] g

Proof. For the first part, we compute

E[T | T] = E[Ty | T4] + iﬂam | Ty =Ty + iﬁm] =T+ (n— 1)E[TY],

=2

by i) and iv) of Exercice 3, and Exercice 4.

For the second part we can notice that by the symmetry property proven in Ex5, for every
1 <14,7 < n one has,

E[T; | T] = E[T; | T},
and that

n

> E[T; | 1) = ZT|T E[T | T] =

i—1
The result follows. u



